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A RECURRENCE FORMULA FOR SHEAR~LAG PROBLEMS

By Paul Kuhn
SUMMARY : —

The analysis of the bending action in box beams with
appreclable shear deformation of the flansSes becomes very
difficult in the zgeneral case of variable cross section
and loading. This paper presents a convenlent method of
solving the problem by the familiar method of dividing the
beam into a number of bays that can be assumed to have
constant cross section and loading. Application of for-
merly derived shear—lag formulas leads %0 a general equa-—

ion closely analogous in form to the well-known three- oL
"moment equation. A numerical example and two comparisons
between calculation and experimental results are included.

INTRODUCTION B

In the sheet-strinzer combinations typical of present-
day aircraft construction, the distribution of the stress-—
es is materially influenced by the shear deformation of the
sheet. A basic theorr for thig "shear-lag' problem was o
discussed in reference 1 and the analysis of single-
stringer siructures, such as shown in figure 1, was in-
nluded for simple cases. Reference 2 showed that the ad-
ditional mathematical difficulties introduced by multi-
stringer structures, such as shown in figure 2, aeould be
circumvented by using “substitute single— stringer struc-
tures,V

The analysis of even a single-stringer structure,
however, presents difficulties in the Zeneral case, in
which the cross secction as well as the loading may vary
czlong ‘the length of %the structure. In reference 3 were
discussed various methods of dealling with this problem by
means of numerical integration methods. These methods —
furnish a comvaratively simple solution, "considering the
complexity of the problem, dput they are inadeguate for o
taking into account all the possible variations of parame- —
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ters. One result of this weakness is that the solutions
may be reliable only near the root of the beam, a serious
drawback in all of the cases where it is not certain that
the critical section will be near the root. For such
cases, mathematically more rigorous msthods of solution
are desirabdle. A principle for such a method was given
in reference 1 in a very brief form; the present paper
shows in detail the most convenient manner of setting up
the equations and also shows comparisons of theory with
tegt data.

BASIC ASSUMPTIONS AND.SIMPLIFICATIONS

For the sake of completeness, the basic assumptions
and methods of procedure will be summarized.

The beam is idealized by assuming each sitringer to-
gether with a certain effective width of sheet to be con—
centrated at its centroid, The resulting idealized
stringers are assumed to carry only longitudinal stresses.

The sheet is assumed to carry all the shear. When
the sheet buckles, allowances must be made for the reduced
shear modulus. When reasonably heavy stringers are at-
tached to the sheet dy two rows of rivets, it is suffi-~
ciently accurate to consider only the "free" width of
-sheet as being subjected to shear deformation.

The transverse stiffness E_. of the cover is assumed
. V. .
to bs.infinite. ©

The shear stiffness G of ghear webs in beams is as—
sumed to be infinite.

For o beam with a number of stringers, which is the
usual case, the stringers are replaced by a single "sgub-
stitute" stringer (reference 2).

The material on the side ovpposite to the one being
analyzed 1s, in general, assumed to be concentrated into a
compact flange attached directly to the shear web, con-
verting the closed bPox into an open box. TFor example,
when the tension gide of the beam is being analyzed, all
the compression material is asgsumed to be concentratsd
into a flange attached toc the shear web. The cffective
centroid for .this flange may beo ostimated, with some al-
lowance beins made for shear-lag action, on the basis of
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expericnce or of s first calculation. Typical cross sec-
tionas of tho resulting substitute single-stringer beams

are shown in figures 3(a) and 3(b). As indicated by the
dotted lines, the boams are assumed to be symmetrical adbout
a longltudinal plane so that only one-half of the structure
needs to be analyzed. o .

The substitute beam gives the stresses ln the corner
flange of the actual muliistringer beam. The calculation
of the normal stresses in the stringers and of the shear
stregses iIn the sheet of the amctual beam ig dealt with in
reference 2. '

All calculations given in this paper deal only with
single~stringer beams. The subscript b5 -~ denoting subdb-
stitute (reference 2) is therefore omitted as unnescessary.

More detailed discussions of these asgumptions and of
the basgic theory, as well as the symbols and the sign con-
ventions used, will be found in references 1 and 2.

GENERAL PRINCIPLES OF ANALYSIS

Direct analytical solutions of the shear~lag probdlem
have thus far been given only for simple cases. Refer-
enceeg 1 and 2 give sclutions for beams in which the cross
section is congtant and the running shear in the webd
Sw/by 1is constant.

Actual PBeams will uswvally have a variadble cross sec—
tion and loading., Numerical solutions for such cases are
obtained by a familiar expedient: The beam is divided into
a number of bays so that no appreciadble error is committed
o¥ assuming that the cross section and the running shear
in the web are constant within each bay. The known analyt-

ical solutions can ther be applied to each individual bay.

The complete numerical solution requires the knowl-
edge of (r + 1) boundary conditions for a beam with =
bays. Two of these conditions are furnished by the known
conditions at the ends of the beam, the root, and the tip.
The remaining conditions are Ffurnished by the principle of
elastic continuity, which requires that the elastlic defor-
mation at the outdoard end of any bay must equal the elas-~
tic deformation at the inboard end of the next bay adjoin-
ing it, :



4 N.A,C.A, Technical Note No. 739

DERIVATION OF EQUATIONS FOR BEAMS WITH FLAT COVER

aND COYSTAWT WIDTH AND DEPTEH

The beam 1s divided into bays as shown in figure 4,
and the bays and the stations are numbered as indicated.
Pigure 5 shows the two adjacent cells n and n + 1 as
free bodiesg on which the forcaes act. For the derilvation
oi—the equations, it will be assumdd that the upper side
of the beam is being analyzed for shear-lag effects; the
lower side is therefore assumed to be concentrated into
a flange attached to the shear web.

In figure 6, the flance and the longitudinal stringer
forces Fp and. ¥y are separated into two groups of
fércest

(1) The zroup of farces shown in figurc 6(a), de-
noted by the suverscrint P indicating that A
these forces are gcalculated by the ordinary
bending theory, which asgsumes that plane
cross sections remain plane and (tacitly) _ .
that the shear modulus ie infinilte.

(2) The group of forces X shown in figure 6(b)
representing the changes in stringer forces
caused by shear deformatlon of the cover
sheet—

Since the first group of forces is in edui%ibrium by it~
self, the second group must also be in équilidbrium by 1t-
crelf; that ie,” the force Xp ncting on the flange at any
siven station muét be equal and opposite to_ the force Xj
acting on the longitudinal at the same station. This re-

gsult was anticivated in fisuro 8{b) b¥ omitting the sub-
scripts F and L from K.

The chief reoason for sevarating the forces into the
P-group and the X-group is cconomy of arithmetic. The
statically indeterminate calculation of the shear-1lag of-
fects furnishes corrections only tc the stresses computed
by the ordinary bending theory and can therefore be carried
throuszh with a lesser dezreo of acouracy than would be re-
guired if the %otal forces wers chosen as stutically inde-~
terminate unknowns.

The groups of forces acting on each bay are assoclat-
cd with shear forces in the cover sheet. The deformations
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caused by these shear forces will be calculated for the
inboard end of bay n and for the outboard end of bay

n + 1, If the two deformations are eguated in accordance
with the principle of elastic continuity, a general ex-
pression will be obtained that will relate the X-forces at
three successive stations with The propsrties of the two
bays between these stations.

Figure 7 shows the cover of bay n with the forces
acting on it separated into groups. The P~°rouE ¢alculat-
ed by the ordinary bending theory is shown in figure 7(a).
The shear stress accompanyini this group causes the shear

deformation YniP et the inboard end of the bay as indi-
cated, the superscript P indicating the force group caus-

ing the deformation and the sub-subscript 1 “denoting the
inboard engd. Figure 7(b) shows the X n—Broup acting at the

inboard end of the bay. The shear stresses asaociated

with this group cause the shear deformation Yni n, Fig-
ure 7(c) shows the X,_,~sroup acting at the outboard end
of the bay; the gshear stresses associated with this group

cause the shear deformation Ynixn‘l at the indboard end.

The total shear deformation at the inboard end of bay n
is

P X "
+ Yni n 4 Yni

Yo o= Y £

ny ny n=3 o (l)

Similarly, the shear deformation at the outboard end of
bay n + 1 is

= P X Xpt 1
Y(n+1)o = 'Y(n+l)° + 'Y(Il'l'l)o n o4 'Y(n'l'l)c-, n+ 1 (2)

where the sub-subscript o denotes the outboard end. The

familiar formula T = %% of the-ordinary bending'theory
zives o _
S«wA -
P P P T WL -
2% = Y = Y = L o= T = (3)
i =
o G‘e hwt-A-T\Ie

The numerical values of this deformation can be computed
for each bay, usling average values for the individual
factors., :
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By application of formulas (B-8) of reference 1, and
introducing new symboels p and g for convenience, 1t
ig found that - -

Xn ' Kl’l

Yng 7 = ~ZIn ty cen‘yanh(KL)n ~%n Pn _ (4)

Ynixn”- "o g Z“‘;n_h@,n " Xaa dn *

Y(n+1)oxn ?*%n £n41 Gezle:::h(KL)n+l ) ?n ﬁn+l (5?
Y(n+1)oxn+l = “Xn+a tpes Gen+i4:;nh(KL)n+1 % THny dnta

(7)

In these formulas, Aqp = Ap + A7, and the parameter K
s defined by

a t
K° = Got r 1 + —;> 8)
- E b . (

Substituting the expressions (4) to (7) into (1) and
(2) and equating Yni to Y(n+1)o give the general re-

latlon

+ D Y Py P (9)

X - n+1) ¥ Xniy dpyy = n o+ 1

n-1 99 ~ X

which. {s the basic recurrence formuls for the shear-lasg
problem, The unknown forces X are obtained by solving a
system gimilar to the familiar systém of three-~-moment equa-
tiong; i.e8., & system of- n eguations, sach eguation ex-
cept the last one and usually the first one involving

three unknowns.,
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BOURDARY CONDITIONS

The first equation of the system is
Xoqy = E(py + Pa) + Xpqy = - Y2+ Ya (10)

If only transverse. loads are applied to the shear web
(fig. 8(a)),

If a couple P hy is introduced at the tip of the shear
wed (fisg. 8(b)), then

X, =P 2L (11)

The last equation of the system is

£ = Xppr = Yo+ Yrpg (12)

r-14r

In this equation, Yn.p; is the "equivalent" shear defor-

mation of the foundation to which the beam is attachsd.
Thig deformation ie defined by

= 8

Yr+1 b (13)
where. & is the relative longitudinal displacement of the
root fittings 2t the flanze F and at thse longitudinal L.

The conditions at the root will fall under one of
three classifications:

(1) Risid foundation.- Although a perfectly rigid
foundation is physically impossible, the foundation may
be stiff enousgh to be considered rigid, and the displace-
ment § will be zero. In practical cases, the condition
0of zero displacemeant mayv be obtained o} symmetry of the

_beam about the plarce of station r. T

(2) Foundation vielding elastlically or inelastically.-

The case of a foundation that yields elastically or inelas-
tically occurs, for instance, when the stresses in & wing
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are carried throtiugh the fuselage by transversge members;
the elongation of these members under load permlts rela-—
tive displacements & of the root fittings on the wing.
These displacements may be obtained by successive approxi-~
mation; in the case of elastic yielding, a carry—-through
member may be treated as an additional bay of the bean,
adding one unknown and one equation %to the system,.

(3) Ionzitudinal free at ths root.— The_ case of the
longitudinal that is unconnected at the root occurs, for
instance, at the tension side of a beam when the stringors
butt against the center section Put are unconnected to 1t
(or when the connection is too flexible to be taken into
account structurally). In this case, the last equation
of the system disappears, and Xn ig determined by gtatic

considerations to be

M A (14)

BEAM WITH CAMBERED COVER AND TAPER IN

DEPTH AND WIDTH

The basic formulas ziven in the preceding sectioans
require some modifications when the cover la cambered, when
the beam 1s tapered in depth, in width, or in both,

In a beam with cambered cover as shown in figure G(b),
the parameter X 1is defined dy (reference 2) .

G L.
Ka = et hw + —-l— § (15)
Eb! \ 'A'F" AL

(i + c

In addition to the X-group, 1t is necessary, for reasons
of static equilibrium, to introduce also a group of forces

Xﬁi acting as shown in figure 9, These forces do not ap-
w

pear in the statiocally indeterminate calculation because
they do not cause shear deformation of the cover; they
must be taken into account, however, when the stresses in
the flanges are computed.
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In a beam with a flat cover, shear~lag action in the
flat-cover side of the beam does not-change.the total
force on the opposite side of the beam at any given sta-
tion; for instance, shear-lag action on the tension side
does not change the total force on the compression side
if the tension side has a flat cover. Shear-lag action on
a cambered cover, however, does changs-the total force on
the opposite side of the beam by the amount XEW because

the'shlft of force between the longltudinal and the flange
on the cambered side reduces the effective depth of the
beam. )

In a beam with cambered covers on both sides (fig.
10) and with cross sections symmetrical about both axes,
it is obviously unnecessary %o analyze one side of the
beam at a time; the conversion of the closed box into an
cpen box by combining all the material on one side into a
single flange attached to the wed is therefore omitted.
The parameter X is defined by ) .

2¢c \ ' L
+ £L -
G_ .t * ]_\

K® = : +:A:_I-.j (15)

=

and the additional force group acting on the uoper and the
LMo T goracy 20 - . T
lower corner flanges ig X hW

In a2 beam with cambersd cover, the basic equatlon (3)
must be written in the more Zeneral form

] —
YP - SALZL = QL B (17)
Geg It Ge It : :

Also, equations (11) and (14) for the boundary condi-~
tions must be written in the more general form

o)
X, = Phy —¥ ——e oL (11a)
and -
MQ
L
X = 2 . (14a)

In a beam tavered in depth, the shear 8 in equations
(3) and (17) must be understood to be the difference between
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the .external shear and the vertical components of the
gtringer forces as given by the familiar formuls

S =8y - 2 tan 6 (18)

where h is the effective depth of the beam and & 1s
the inclination between the effective compression flange
and the effective tension flange. PFor & beam with com-
bersd cover, equation (18) may be written in the more gen-—
eral form

5 = sg - ¥§ tan & (19)

where Q 1s the static moment of Ap and Ay, about the
centroidal axis. -

Serious theorstical difficulties arise when the bean
has taper in width. The method of analysis developed thus
far may be considered dependent upon two distinet basic
theories: the engZineering theory of bending and the sim—~
plified theory of shear deformation in a skin-stringer
combingtion. Both.theories break down when the beam has
taper in width, so that the development of an entlrely
rational theory 1s impossible wilthout wtilizing or devel-
oping considerably more refined basic theoriles.

As a temporary solution for engineering purposes, a
semirational modification of the procedure for beams with
congtant width may be msed. The actual width b and the
actual thickness t of the sheet are replaced by & ficti-
tious width by and a fictitlous thickness ty. The filec-

titious width at any given station is taken as
be =D 3§> = b, - (20)

where b 1is the actual width at the station and b, the

actual width at the root; the introduction of this ficti-
tious width converts the tapered beam into a beam of con-
stant width equal to the width at the root of the tapered
bean.

The fictitious thickness tp. at any statlon may be

so determined that the shear stiffness of the fictitlous
sheet will equal the shear gtiffness of the actual shes?
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at that station. Becausé the shear stiffnéss 6f the sheet
is proportional to t/b, this method of procedurp woul&
require that ' : T

b = 8 =2 L (21)
£ b

The use of thig fictitions thickness then comnensates for
the use of a fictitious.width; at any station along the
span, the shear-lag parameter K of the flctitious beam
with constant width equals the parameter X of the actual
beam with tapered width., The cdefficisnts P,, qp, and Y,,

as defined by equations (%) to " (7), are changed bhecause
they involve 't independently of b, _

Considerations of the limiting case of a beam tapered
to a point tend to indicate that this method of compensa-
tion is inadequatse, and comna*ison w1th thd fests of
N.A.C.A. Deam 4 described in reference 2 Shows ré%her poor
agreement. More satisfactory agreement between. this fest
and caleculation is obtained when the fictitIous %aickness
is taken as

S R

The use of thls value for the fictitious thickness changes

not only the coefficients p, g, and Y dbul aIso the shear-

lag. parameter K at each station. -
Physically, the use of equations (20) and (21) may de

interpreted as ftaking into account only the-direct effect

of variable width on the shear stiffness and neglecting

all the effects of transverse comvonents of forces caused

by the inclination of the flange toward the center string~

er. The use of equation (22) represents an attempt to

take into account the e:fect of this inclination of the

flange.

COMPARISON BETWEEN CALCULATION AND TEST RESULTS

Only two tests are availabls for checking the method
of analysis developed. One zlready mentioned is that of
N.A.GC.A. beam 4 described in reference 2. ' The second one
1s described in reference 4. The beam used in the second
test had a constant cross section, but the load was applied
in the form of.several concentrated loads. Fisure 11 shows
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the experimental and the calculated results for N.A.C.A.
beam 4; figure 12 shows the raesults for the beam of refor-
ence 4, Ag a matter of gsome interest, the u-soclution of
roference 3, as well as the X-solution of this paper, 1is
shown in these flgures,.

The agreement between btest and calculation 1s not all
that could be desired for N.A.C.A., beam 4, It i1s possible
that esome of the discrepancy near the root was caused by
defective workmanship in one flange, which may he the rea-
gon for the decided drop in stresse of one flange near the
root. Regardless of whether defective workmanship in the
flange caused the discrepancy, an experimental check of
the specific influence of taper in width avypears desiradle.

The agreement for the beam of figure 12 is very much
better, particularly in the critical reg8ion near the root,
The X-solution predicts correctly, at least qualitatively,
the reversal in stress near the tip: the u-solution does
not. The u~solution depends on the tatal shear at the
root and gives a very food approximation near the root; it
cannpt take into account the manner in which the load is
distributed along the span and, concomitantly, it cannot
be expected to g£ive results in very close agreemsnt with
the facts outboard of the root region, particularly if
there are discontinuities of loading or cross section.
Whether such disagreement is of practical importance de~
prends, of course, on the individual circumstances.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley -Field, Va., November 16, 1939.
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APPERDIX

Kumerical Example

As a numerical example for .the method of analysis de-~
veloped, the analysis of N.A,C.A. beam 4 will ve £iven.
The dimensions of thisg beam are given in reference 2, The
single—~stringer beam gudbstituted for the actual beam is
calculated by the method described in reference 2 as fol-
lows ¢ - -

The compression flanges, the tension flanges, and the
longitudinals are assumed to be concentrated at their re-
spective centroids. The cover sheet, which ig 0.0114 inch
thick, is assumed to be fully effective in aiding the lon-
gitudinals, and the adjacent strips of sheet are added %o
the longitudinals or flanges. The shaar web 1s also as-~
sumed to be fully effective in bending and is replaced by
concentrated flanges of cross—gectional ares l/o AW The
area of the substitute longitudinal is calculated bv for~
mula (4) of reference 2: - -

sinh Ksb

e e

Ans = &g

The substitute camber is talren as } - .. - ===

GS= ‘lé‘c

Phe subscript S 1is dropped as unnecessary for the present
paper. With the geometrical properties of the single—

stringer subvstitute beam thus defined and listed in rows 1
to 5 of table I, the average section modulus I/zL can be

computed for each bay and is listed in row 6.

The effect of taper in width is allowed for Dby intro-
ducing the fictitious width Dbr and the fictitious sheet
thickness t¢, according to formulas (20) and (22); the
shear-lag parameter is then calculated by the formula

L ¢
2 Gty (17 1 ¢t vo! [t Eg 1
K = T + — == " N 4o ——

Eb. Ay L) T E0 o iy e

KS .b ) . ) h -—
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and listed in row 7: XL 1g then listed for each bay, L
being 19 inches for each bay, and the values of KL, sinh
KL, and tanh KL are found in rows 8, 9, and 10, re-
gpectively.

i The next step is the computation of the coefficlients
P, ¢, and Y for the system of X-equations. Some sllght
modifications were made in this particular case to reduco
the amount of arithmetic. The shear modulus G appears
as a factor in all coefficients and consequently can Pe
canceled., The thiclnessg tf for all bavs involvesg the

thickness t asg a common factor, so that t can be can-
celed. With these modifications, the coeffilcients become

- X bl
" tanh KL bo! -
X " p!

sinh XL Db,
and are listed in rows 11 and 12.

Before the coefficient Y is computed, the shear for
each bay must be computed by formule (18) or (19); the load
is a concentrated load of 250 pounds applied at the tip,
and the resulting gshear 8§ ig listed in row 1Z, With
this shear S and by the use of the modifications previ-
ously mentioned, the coofficient YP 1g

- I g

and is listed in’ row 14.

With these.,coefficients, the system of oquations
formed according to the Zeneral equation (9) is

1

-0.0791 X; +0.013%54 X, = 0,24
C.01354 X -0.0921 X3 © +0.02068 X4 = 0.06
¢.02068 X5 -0.1070 X, +0,02908 X, = 0.02
0.02908 X, ~O.124é X4 +0.,0383 Xj = .02

0.0383 X5 =~ ~0.0373 Xs -14,39
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The solution of this system of equations gives the
values of X 1listed in row 1 of tabls II The flange
stresses caused by the X-group are.

(1 + —°-'

and are listed in row 2 of table II. This tabulation com-—
rletes the X-solution of the substitute beam. The total
flange stresses o in the actual beam are found by adding
the stresses Oy to the flange stresses Ops calculated

for the actual beam by the ordinary bending theory, as

shown in rows 3 and 4 of table II. Figure 11 shows the re-~
sults graphically. Strictly speaking, the stresses within
each bay should be calculated by using formulasg (B-8) of
reference 1 or (A-3) of reference 2; this refinement,
however, 1g .seldom necessary. : -
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Basle Properties of Beam and Coefficients

for Recurrence Formula

Bay 1 2 3 4 5

1 Ap .0.1465 | 0.1535 0.1600 0.1665 | 0.1735
2 4Ag <330 395 .460 .525 .590
3  b! 6.71 7.93 9,15 10.37 11.59

4 hy 3.00 3.60 4,20 4,80 5.40

5 c 615 . 725 .840 .955 1.070
6 I/zy 1.523 2.117 2,805 3.59 4,47

7 K°© .01392 .00916 .00643 L0047 . 00357
8 KL 2,240 1,815 1.520 1.304 1.163
9 sinh XKL| 4.643 2,988 2,177 1,706 1,443
10 tanh KL 978 .940 .909 .862 . .822
11 p . 0365 . 0426 0495 L0575 L0873
12 q . 00770 .01354 .02068 .02908 . 0383
13 S 225.0 187.5 161.0 140,7 125.0
14 ~F 14.76 14.80 14.86 14,88 14.90
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TABLE II
Flange Forces and Stresses

Station 1 2 "3 4 5
1 X 0,4 5.0 Z25.1 89.4 272 .5
2 Ox 3 38 185 631 1847
3 Op 1795 2390 2920 3040 3015
4 o 1798 2798 3105 3671 4862
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Figs. 1,2

Figure 3 i
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Pigure 3.- Typical cross sectiens of substitute single~stringer beams.
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Figure 4.- Division of beam lnto tays.
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Figure 5.- Forces acting on individual bays.



N.A.C.A. Pechnical Ncib No, 739 Fig, 6

" (a) P - forces.

(t}) X - forces.

Figure 6.- Division of forces into P ~ forces and X - forces.
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Figure 7.- Forces and deformations on cover of hay n. All forces and
deformations are shown as positive, C =

(a) (v)
Figure 8.- Types of loading at tip bay.
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Figure 9.~ Group of X - forces on Figure 10,- Beam with both
cambered beam, sides cambered.
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Figure 1l.- Flange stresses in tapered beam with tip load. Experimental
data from reference 2. -
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Figure 12.- Flange etresses in straight beam with

distributed load, Experimental data
from reference 4.
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